
blog.floydhub.com

Beginner’s Guide on Recurrent
Neural Networks with PyTorch

Ajay Uppili Arasanipalai

24-31 minutes

Recurrent Neural Networks(RNNs) have been the answer to

most problems dealing with sequential data and Natural

Language Processing(NLP) problems for many years, and

its variants such as the LSTM are still widely used in

numerous state-of-the-art models to this date. In this post,

I’ll be covering the basic concepts around RNNs and

implementing a plain vanilla RNN model with PyTorch to

generate text.

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

1 of 27 5/8/20, 6:23 PM

Although the content is introductory, the post assumes that

you at least have a basic understanding of normal feed-

forward neural nets.

Without further ado, let's jump right into it!

Basic Concepts

What exactly are RNNs? First, let’s compare the architecture

and flow of RNNs vs traditional feed-forward neural

networks.

Overview of the feed-forward neural network and RNN

structures

The main difference is in how the input data is taken in by

the model.

Traditional feed-forward neural networks take in a fixed

amount of input data all at the same time and produce a

fixed amount of output each time. On the other hand, RNNs

do not consume all the input data at once. Instead, they take

them in one at a time and in a sequence. At each step, the

RNN does a series of calculations before producing an

output. The output, known as the hidden state, is then

combined with the next input in the sequence to produce

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

2 of 27 5/8/20, 6:23 PM

water

water

water

another output. This process continues until the model is

programmed to finish or the input sequence ends.

Still confused? Don't anguish yet. Being able to visualize the

flow of an RNN really helped me understand when I started

on this topic.

Simple process flow of an RNN cell

As we can see, the calculations at each time step consider

the context of the previous time steps in the form of the

hidden state. Being able to use this contextual information

from previous inputs is the key essence to RNNs’ success in

sequential problems.

While it may seem that a different RNN cell is being used at

each time step in the graphics, the underlying principle of

Recurrent Neural Networks is that the RNN cell is actually

the exact same one and reused throughout.

Processing RNN Outputs?

You might be wondering, which portion of the RNN do I

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

3 of 27 5/8/20, 6:23 PM

extract my output from? This really depends on what your

use case is. For example, if you’re using the RNN for a

classification task, you’ll only need one final output after

passing in all the input - a vector representing the class

probability scores. In another case, if you’re doing text

generation based on the previous character/word, you’ll

need an output at every single time step.

This image was taken from Andrej Karpathy’s blog post

This is where RNNs are really flexible and can adapt to your

needs. As seen in the image above, your input and output

size can come in different forms, yet they can still be fed into

and extracted from the RNN model.

Many inputs to one output

For the case where you’ll only need a single output from the

whole process, getting that output can be fairly

straightforward as you can easily take the output produced

by the last RNN cell in the sequence. As this final output has

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

4 of 27 5/8/20, 6:23 PM

water

water

water

already undergone calculations through all the previous

cells, the context of all the previous inputs has been

captured. This means that the final result is indeed

dependent on all the previous computations and inputs.

Many inputs to many outputs

For the second case where you’ll need output information

from the intermediate time steps, this information can be

taken from the hidden state produced at each step as shown

in the figure above. The output produced can also be fed

back into the model at the next time step if necessary.

Of course, the type of output that you can obtain from an

RNN model is not limited to just these two cases. There are

other methods such as Sequence-To-Sequence translation

where the output is only produced in a sequence after all the

input has been passed through. The diagram below depicts

what that looks like.

Structure of a sequence-to-sequence model

Inner Workings

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

5 of 27 5/8/20, 6:23 PM

water

water

Now that we have a basic understanding and a bird's eye

view of how RNNs work, let's explore some basic

computations that the RNN’s cells have to do to produce the

hidden states and outputs.

hidden� = F(hidden�−�, input
�
)

In the first step, a hidden state will usually be seeded as a

matrix of zeros, so that it can be fed into the RNN cell

together with the first input in the sequence. In the simplest

RNNs, the hidden state and the input data will be multiplied

with weight matrices initialized via a scheme such as Xavier

or Kaiming(you can read more on this topic here). The result

of these multiplications will then be passed through an

activation function(such as a tanh function) to introduce non-

linearity.

hidden� = tanh(weight
������

∗ hidden�−� + weight
�����

∗

input
�
)

Additionally, if we require an output at the end of each time

step we can pass the hidden state that we just produced

through a linear layer or just multiply it by another weight

matrix to obtain the desired shape of the result.

output
�

= weight
������

∗ hidden�

The hidden state that we just produced will then be fed back

into the RNN cell together with the next input and this

process continues until we run out of input or the model is

programmed to stop producing outputs.

As mentioned earlier, these computations presented above

are just simple representations of how RNN cells do their

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

6 of 27 5/8/20, 6:23 PM

water

water

water

calculations. For the more advanced RNN structures such

as LSTMs, GRUs, etc., the computations are generally

much more complicated.

Training and Back-propagation

Similar to other forms of neural networks, RNN models need

to be trained in order to produce accurate and desired

outputs after a set of inputs are passed through.

How weights are updated through back-propagation. Taken

from WildML’s blog post

During training, for each piece of training data we’ll have a

corresponding ground-truth label, or simply put a“correct

answer” that we want the model to output. Of course, for the

first few times that we pass the input data through the

model, we won’t obtain outputs that are equal to these

correct answers. However, after receiving these outputs,

what we’ll do during training is that we’ll calculate the loss of

that process, which measures how far off the model’s output

is from the correct answer. Using this loss, we can calculate

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

7 of 27 5/8/20, 6:23 PM

water

the gradient of the loss function for back-propagation.

With the gradient that we just obtained, we can update the

weights in the model accordingly so that future computations

with the input data will produce more accurate results. The

weight here refers to the weight matrices that are multiplied

with the input data and hidden states during the forward

pass. This entire process of calculating the gradients and

updating the weights is called back-propagation. Combined

with the forward pass, back-propagation is looped over and

again, allowing the model to become more accurate with its

outputs each time as the weight matrices values are

modified to pick out the patterns of the data.

Although it may look as if each RNN cell is using a different

weight as shown in the graphics, all of the weights are

actually the same as that RNN cell is essentially being

re-used throughout the process. Therefore, only the input

data and hidden state carried forward are unique at each

time step.

Textual Input Data

Unlike humans, neural networks are generally much less

proficient at handling textual data. Therefore in most Natural

Language Processing (NLP) tasks, text data is usually

converted to a set of numbers, such as embeddings, one-

hot encodings, etc. such that the network can parse the data

better. In our implementation later in this post, I’ll be using

one-hot encoding to represent our characters. Therefore I’ll

give a brief view of what it encompasses.

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

8 of 27 5/8/20, 6:23 PM

water

As with most machine learning or deep learning projects,

data pre-processing more often than not takes up a

significant portion of the time of a project. In our example

later, we’ll be pre-processing our textual data into a simple

representation - one-hot encodings at the character level.

This form of encoding is basically giving each character in

the text a unique vector. For example, if our text only

contains the word “GOOD”, there are only 3 unique

characters and thus our vocabulary size is only 3. We will

allocate each unique character a unique vector, where all

the items are zero except one at an index assigned to that

character. This is how we represent each character to the

model.

Inputs are being converted to one-hot representations and

outputs are the corresponding class scores

The output may be something similar as well, where we can

take the highest number in the vector and take it as the

predicted character.

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

9 of 27 5/8/20, 6:23 PM

water

water

The output may be something similar as well, where we can

take the highest number in the vector and take it as the

predicted character.

Hands-On (Time for the code!)

We’ve gone through most of the basics of RNNs. While you

may still have some concepts that you’re uncertain of,

sometimes reading and implementing it in the code may

help clear things up for you!

You can run the code we’re using on FloydHub by clicking

the button below and creating the project.

Run on FloydHub

Alternatively, here’s there link to the notebook on GitHub:

https://github.com/gabrielloye/RNN-walkthrough/blob/master

/main.ipynb

In this implementation, we’ll be using the PyTorch library, a

deep learning platform that is easy to use and widely utilized

by top researchers. We will be building a model that will

complete a sentence based on a word or a few characters

passed into it.

How our model will be processing input data and producing

outputs

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

10 of 27 5/8/20, 6:23 PM

The model will be fed with a word and will predict what the

next character in the sentence will be. This process will

repeat itself until we generate a sentence of our desired

length.

To keep this short and simple, we won't be using any large

or external datasets. Instead, we'll just be defining a few

sentences to see how the model learns from these

sentences. The process that this implementation will take is

as follows:

Flow of the implementation

We'll start off by importing the main PyTorch package along

with the nn package which we will use when building the

model. In addition, we'll only be using NumPy to pre-process

our data as Torch works really well with NumPy.

import torch

from torch import nn

import numpy as np

First, we'll define the sentences that we want our model to

output when fed with the first word or the first few

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

11 of 27 5/8/20, 6:23 PM

characters.

Then we'll create a dictionary out of all the characters that

we have in the sentences and map them to an integer. This

will allow us to convert our input characters to their

respective integers (char2int) and vice versa (int2char).

text = ['hey how are you','good i am

fine','have a nice day']

Join all the sentences together and

extract the unique characters from the

combined sentences

chars = set(''.join(text))

Creating a dictionary that maps integers

to the characters

int2char = dict(enumerate(chars))

Creating another dictionary that maps

characters to integers

char2int = {char: ind for ind, char in

int2char.items()}

The char2int dictionary will look like this: It holds all the

letters/symbols that were present in our sentences and

maps each of them to a unique integer.

[Out]: {'f': 0, 'a': 1, 'h': 2, 'i': 3, 'u':

4, 'e': 5, 'm': 6, 'w': 7, 'y': 8, 'd': 9,

'c': 10, ' ': 11, 'r': 12, 'o': 13, 'n': 14,

'g': 15, 'v': 16}

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

12 of 27 5/8/20, 6:23 PM

Next, we'll be padding our input sentences to ensure that all

the sentences are of standard length. While RNNs are

typically able to take in variably sized inputs, we will usually

want to feed training data in batches to speed up the training

process. In order to used batches to train on our data, we'll

need to ensure that each sequence within the input data is

of equal size.

Therefore, in most cases, padding can be done by filling up

sequences that are too short with 0 values and trimming

sequences that are too long. In our case, we'll be finding the

length of the longest sequence and padding the rest of the

sentences with blank spaces to match that length.

Finding the length of the longest string

in our data

maxlen = len(max(text, key=len))

Padding

A simple loop that loops through the list

of sentences and adds a ' ' whitespace until

the length of

the sentence matches the length of the

longest sentence

for i in range(len(text)):

 while len(text[i])<maxlen:

 text[i] += ' '

As we're going to predict the next character in the sequence

at each time step, we'll have to divide each sentence into:

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

13 of 27 5/8/20, 6:23 PM

water

water

water

Input data

The last input character should be excluded as it does not

need to be fed into the model

Target/Ground Truth Label

One time-step ahead of the Input data as this will be the

"correct answer" for the model at each time step

corresponding to the input data

Creating lists that will hold our input

and target sequences

input_seq = []

target_seq = []

for i in range(len(text)):

 # Remove last character for input

sequence

 input_seq.append(text[i][:-1])

 # Remove first character for target

sequence

 target_seq.append(text[i][1:])

 print("Input Sequence: {}\nTarget

Sequence: {}".format(input_seq[i],

target_seq[i]))

Our input sequence and target sequence will look like this:

Input Sequence: hey how are yo

Target Sequence: ey how are you

The target sequence will always be one-time step ahead of

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

14 of 27 5/8/20, 6:23 PM

the input sequence.

Now we can convert our input and target sequences to

sequences of integers instead of a sequence of characters

by mapping them using the dictionaries we created above.

This will allow us to one-hot-encode our input sequence

subsequently.

for i in range(len(text)):

 input_seq[i] = [char2int[character] for

character in input_seq[i]]

 target_seq[i] = [char2int[character] for

character in target_seq[i]]

Before encoding our input sequence into one-hot vectors,

we'll define 3 key variables:

1. dict_size: Dictionary size - The number of unique characters

that we have in our text

This will determine the one-hot vector size as each

character will have an assigned index in that vector

2. seq_len: The length of the sequences that we're feeding into

the model

As we standardized the length of all our sentences to be

equal to the longest sentences, this value will be the max

length - 1 as we removed the last character input as well

3. batch_size: The number of sentences that we defined and

are going to feed into the model as a batch

dict_size = len(char2int)

seq_len = maxlen - 1

batch_size = len(text)

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

15 of 27 5/8/20, 6:23 PM

water

water

water

water

water

water

def one_hot_encode(sequence, dict_size,

seq_len, batch_size):

 # Creating a multi-dimensional array of

zeros with the desired output shape

 features = np.zeros((batch_size,

seq_len, dict_size), dtype=np.float32)

 # Replacing the 0 at the relevant

character index with a 1 to represent that

character

 for i in range(batch_size):

 for u in range(seq_len):

 features[i, u, sequence[i][u]] =

1

 return features

We also defined a helper function that creates arrays of

zeros for each character and replaces the corresponding

character index with a 1.

Input shape --> (Batch Size, Sequence

Length, One-Hot Encoding Size)

input_seq = one_hot_encode(input_seq,

dict_size, seq_len, batch_size)

Since we're done with all the data pre-processing, we can

now move the data from NumPy arrays to PyTorch's very

own data structure - Torch Tensors.

input_seq = torch.from_numpy(input_seq)

target_seq = torch.Tensor(target_seq)

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

16 of 27 5/8/20, 6:23 PM

water

Now we've reached the fun part of this project! We'll be

defining the model using the Torch library, and this is where

you can add or remove layers, be it fully connected layers,

convolutional layers, vanilla RNN layers, LSTM layers, and

many more! In this post, we'll be using the basic nn.rnn to

demonstrate a simple example of how RNNs can be used.

Before we start building the model, let's use a built-in feature

in PyTorch to check the device we're running on (CPU or

GPU). This implementation will not require GPU as the

training is really simple. However, as you progress on to

large datasets and models with millions of trainable

parameters, using the GPU will be very important to speed

up your training.

torch.cuda.is_available() checks and

returns a Boolean True if a GPU is

available, else it'll return False

is_cuda = torch.cuda.is_available()

If we have a GPU available, we'll set our

device to GPU. We'll use this device

variable later in our code.

if is_cuda:

 device = torch.device("cuda")

 print("GPU is available")

else:

 device = torch.device("cpu")

 print("GPU not available, CPU used")

To start building our own neural network model, we can

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

17 of 27 5/8/20, 6:23 PM

define a class that inherits PyTorch’s base class(nn.module)

for all neural network modules. After doing so, we can start

defining some variables and also the layers for our model

under the constructor. For this model, we’ll only be using 1

layer of RNN followed by a fully connected layer. The fully

connected layer will be in charge of converting the RNN

output to our desired output shape.

We’ll also have to define the forward pass function under

forward() as a class method. The forward function is

executed sequentially, therefore we’ll have to pass the inputs

and the zero-initialized hidden state through the RNN layer

first, before passing the RNN outputs to the fully-connected

layer. Note that we are using the layers that we defined in

the constructor.

The last method that we have to define is the method that

we called earlier to initialize the hidden state - init_hidden().

This basically creates a tensor of zeros in the shape of our

hidden states.

class Model(nn.Module):

 def __init__(self, input_size,

output_size, hidden_dim, n_layers):

 super(Model, self).__init__()

 # Defining some parameters

 self.hidden_dim = hidden_dim

 self.n_layers = n_layers

 #Defining the layers

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

18 of 27 5/8/20, 6:23 PM

 # RNN Layer

 self.rnn = nn.RNN(input_size,

hidden_dim, n_layers, batch_first=True)

 # Fully connected layer

 self.fc = nn.Linear(hidden_dim,

output_size)

 def forward(self, x):

 batch_size = x.size(0)

 # Initializing hidden state for

first input using method defined below

 hidden =

self.init_hidden(batch_size)

 # Passing in the input and hidden

state into the model and obtaining outputs

 out, hidden = self.rnn(x, hidden)

 # Reshaping the outputs such that it

can be fit into the fully connected layer

 out = out.contiguous().view(-1,

self.hidden_dim)

 out = self.fc(out)

 return out, hidden

 def init_hidden(self, batch_size):

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

19 of 27 5/8/20, 6:23 PM

 # This method generates the first

hidden state of zeros which we'll use in the

forward pass

 # We'll send the tensor holding the

hidden state to the device we specified

earlier as well

 hidden = torch.zeros(self.n_layers,

batch_size, self.hidden_dim)

 return hidden

After defining the model above, we'll have to instantiate the

model with the relevant parameters and define our hyper-

parameters as well. The hyper-parameters we're defining

below are:

n_epochs: Number of Epochs --> Number of times our

model will go through the entire training dataset

lr: Learning Rate --> Rate at which our model updates the

weights in the cells each time back-propagation is done

For a more in-depth guide on hyper-parameters, you can

refer to this comprehensive article.

Similar to other neural networks, we have to define the

optimizer and loss function as well. We’ll be using

CrossEntropyLoss as the final output is basically a

classification task and the common Adam optimizer.

Instantiate the model with hyperparameters

model = Model(input_size=dict_size,

output_size=dict_size, hidden_dim=12,

n_layers=1)

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

20 of 27 5/8/20, 6:23 PM

We'll also set the model to the device

that we defined earlier (default is CPU)

model.to(device)

Define hyperparameters

n_epochs = 100

lr=0.01

Define Loss, Optimizer

criterion = nn.CrossEntropyLoss()

optimizer =

torch.optim.Adam(model.parameters(), lr=lr)

Now we can begin our training! As we only have a few

sentences, this training process is very fast. However, as we

progress, larger datasets and deeper models mean that the

input data is much larger and the number of parameters

within the model that we have to compute is much more.

Training Run

for epoch in range(1, n_epochs + 1):

 optimizer.zero_grad() # Clears existing

gradients from previous epoch

 input_seq.to(device)

 output, hidden = model(input_seq)

 loss = criterion(output,

target_seq.view(-1).long())

 loss.backward() # Does backpropagation

and calculates gradients

 optimizer.step() # Updates the weights

accordingly

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

21 of 27 5/8/20, 6:23 PM

 if epoch%10 == 0:

 print('Epoch:

{}/{}.............'.format(epoch, n_epochs),

end=' ')

 print("Loss:

{:.4f}".format(loss.item()))

[Out]: Epoch: 10/100............. Loss:

2.4176

 Epoch: 20/100............. Loss:

2.1816

 Epoch: 30/100............. Loss:

1.7952

 Epoch: 40/100............. Loss:

1.3524

 Epoch: 50/100............. Loss:

0.9671

 Epoch: 60/100............. Loss:

0.6644

 Epoch: 70/100............. Loss:

0.4499

 Epoch: 80/100............. Loss:

0.3089

 Epoch: 90/100............. Loss:

0.2222

 Epoch: 100/100............. Loss:

0.1690

Let’s test our model now and see what kind of output we will

get. As a first step, we'll define some helper function to

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

22 of 27 5/8/20, 6:23 PM

convert our model output back to text.

This function takes in the model and

character as arguments and returns the next

character prediction and hidden state

def predict(model, character):

 # One-hot encoding our input to fit into

the model

 character = np.array([[char2int[c] for c

in character]])

 character = one_hot_encode(character,

dict_size, character.shape[1], 1)

 character = torch.from_numpy(character)

 character.to(device)

 out, hidden = model(character)

 prob = nn.functional.softmax(out[-1],

dim=0).data

 # Taking the class with the highest

probability score from the output

 char_ind = torch.max(prob, dim=0)

[1].item()

 return int2char[char_ind], hidden

This function takes the desired output

length and input characters as arguments,

returning the produced sentence

def sample(model, out_len, start='hey'):

 model.eval() # eval mode

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

23 of 27 5/8/20, 6:23 PM

 start = start.lower()

 # First off, run through the starting

characters

 chars = [ch for ch in start]

 size = out_len - len(chars)

 # Now pass in the previous characters

and get a new one

 for ii in range(size):

 char, h = predict(model, chars)

 chars.append(char)

 return ''.join(chars)

Let's run the function with our model and the starting words

'good'.

sample(model, 15, 'good')

[Out]: 'good i am fine '

As we can see, the model is able to come up with the

sentence ‘good i am fine ‘ if we feed it with the words ‘good’.

Pretty good for a few lines of code, yea?

Model Limitations

While this model is definitely an over-simplified language

model, let’s review its limitations and the issues that need to

be addressed in order to train a better language model.

Over-fitting

We only fed the model with 3 training sentences, therefore it

essentially “memorized” the sequence of characters of these

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

24 of 27 5/8/20, 6:23 PM

sentences and thus returned us the exact sentence that we

trained it on. However, if a similar model is trained on a

larger data-set with some randomness added into it, the

model will pick out the general sentence structures and

language rules, and it’ll be able to generate its own unique

sentences.

Nevertheless, running your models with a single sample or

batch acts as a sanity check for your workflow, ensuring that

your data types are all correct, your model is learning fine,

etc.

Handling of unseen characters

The model is only currently able to process the characters

that it has seen before in the training data set. Normally, if

the training data set is large enough, all letters and symbols,

etc. should appear at least once and will thus be present in

our vocabulary. However, it is always good to have a way to

handle never seen before characters, such as assigning all

unknowns to its own index.

Representation of Textual Data

In this implementation, we used one-hot encoding to

represent our characters. While it may be fine for this task

due to its simplicity, most of the time it should not be used

as a solution in actual or more complex problems. This is

because:

It is computationally too expensive for large datasets

There is no contextual/semantic information embedded in

one-hot vectors

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

25 of 27 5/8/20, 6:23 PM

and many other downsides that make this solution less

viable.

Instead, most modern NLP solutions rely on word

embeddings (word2vec, GloVe) or more recently, unique

contextual word representations in BERT, ELMo, and

ULMFit. These methods allow the model to learn the

meaning of a word based on the text that appears before it,

and in the case of BERT, etc., learn from the text that

appears after it as well.

Next Steps

This post is just the tip of the iceberg when it comes to

Recurrent Neural Networks. While the vanilla RNN is rarely

used in solving NLP or sequential problems, having a good

grasp of the basic concepts of RNNs will definitely aid in

your understanding as you move towards the more popular

GRUs and LSTMs.

Ready for Long Short-Term Memory?! Here's the sequel!

Special thanks to Alessio for his constant guidance and the

rest of the FloydHub team for providing this amazing

platform and allowing me to give back to the deep learning

community. Stay awesome!

About Gabriel Loye

Gabriel is an Artificial Intelligence enthusiast and web

developer. He’s currently exploring various fields of deep

learning, from Natural Language Processing to Computer

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

26 of 27 5/8/20, 6:23 PM

Vision. He is always open to learning new things and

implementing or researching on novel ideas and

technologies. He will be starting his undergraduate studies

in Business Analytics at NUS School of Computing. He is

currently an intern at a FinTech start-up, PinAlpha. Gabriel is

also a FloydHub AI Writer. You can connect with Gabriel on

LinkedIn and GitHub.

Beginner’s Guide on Recurrent Neural Networks with PyTorch about:reader?url=https://blog.floydhub.com/a-beginners-guide...

27 of 27 5/8/20, 6:23 PM

