
Parallel Regions using a PDDL Formalization

Claudio Scheer
claudio.scheer@edu.pucrs.br

Master’s Degree in Computer Science
Pontifical Catholic University of Rio Grande do Sul - PUCRS

Porto Alegre - RS, Brazil

Abstract

Testing whether a region in a program can be run in
parallel is not an easy task. This process takes a lot of
time and, consequently, finantial resources. As an ap-
proach to this problem, this paper proposes formalizing
a compiler with PDDL. With this formalization, it will
be possible to reduce the identification of a parallel code
to a conventional search problem.

There are still many programs that do not exploit the parallel
capacity of today’s processors. One of the main reasons for
this is because the cost to rewrite a program is high. Among
the steps involved in the process of migrating a program to
a parallel approach, the most expensive is to identify the re-
gions of the program than can be executed in parallel. In
addition to identifying the regions, it is necessary to validate
whether the parallel execution of that region brings positive
results.

According to (del Rio Astorga et al. 2018), loops detec-
tion, variable dependencies, identifying whether the argu-
ments are read or written, among other analyzes, are the
main patterns that identify a region parallel in a program.
Over time, these caracteristics may change and the static
analysis will need to be changed.

Therefore, instead of using a static analysis of the source
code, the approach in this paper will reduce the problem
of identifying a region that can be executed in parallel to
a search problem. The compiler domain will be formalized
using PDDL. In a nutshell, the domain will function as a
source code compiler. Section Technical Approach discusses
in more detail how the PDDL domain will work.

A PDDL domain describe actions that can be performed
in an initial state, to achieve a set of goals. In this paper,
the source code will be treated as the initial state. The set
of goals will be the complete execution of all instructions in
the source code, in the correct order. A problem formalized
in PDDL cannot understand source code written in C++ as
input, for example. The initial state must be a set of predi-
cates. Hence, the source code provided as an initial state for
the planner must be mapped to a set of predicates. This pro-
cess is the bottleneck of the proposed approach. However,

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

this task can be easily automated (I was thinking of creating
this tool, but first I will implement the PDDL domain).

The planner will be reponsible for finding the set of
predicates that can be run in parallel. In the Section Re-
sults Evaluation, I discuss more about how I will evaluate
whether the results were positive or not. In addition, in Sec-
tion Project Management, I show the schedule that will be
followed to execute this proposal.

Technical Approach
Compilers are the programs that convert written source code
into executable code. Compilers, in general, are complex
programs. In general, the compiler needs to break the source
code into tokens1 and represent it in a tree. Over this tree,
the compiler performs some optimizations, such as remov-
ing unused variables and unreachable codes. After all this,
the compiler can convert the tree into machine instructions.

The compiler must support all instructions provided by
the programming language and be able to translate it for ev-
ery operating systems. It is difficult to develop a compiler.
In the proposed approach it will not be necessary to deal
with all these complexities. The compiler will be formalized
as a PDDL domain, with support for arithmetic and binary
operations, functions and loop intructions.

In theory, this approach would work for all programming
languages. However, I will create the actions and the predi-
cates from the perspective of a source code written in C++.

There are still some questions to be answered during the
execution of the project, as follows:

1. Is the compiler domain capable of handling fluent vari-
ables and predicates?

2. Is the compiler domain capable of performing operations
with strings?

3. Which planners should I test the compiler domain on?

4. How does a planner find a parallel region?

5. Can I set a weight for the planner to get regions that are
really worth running in parallel?

1A token can be a keyword, a variable name, an operator, etc.



Results Evaluation
As previously described, the goal of the planner will be to
execute all instructions in the correct order and find instruc-
tions that can be executed in parallel. Hence, to evaluate the
correct output of the planner, I will map the predicates back
to the source code and validate the parallel execution pro-
posed by the planner.

The main objective of decoding the planner output in a
source code is to test whether the parallel execution really
brings positive results. A positive result, in the proposed ap-
proach, can be understood as the execution of a problem in
less time.

Project Management
Task Start End
Understand
better
compilers

06-01-2020 06-03-2020

Support sum
instruction

06-03-2020 06-07-2020

Support
proposed
instructions

06-08-2020 06-15-2020

Evaluate results 06-16-2020 06-20-2020
Write paper 06-20-2020 06-25-2020

Conclusion
In summary, this approach will reduce the problem of find-
ing a parallel region to a search problem. As an output,
the planner will execute all instructions of the program and
identify the regions that can be executed in parallel. Clearly,
these approach needs a validation in terms of testing to find
out if the regions are really parallel.

The approach proposed in this paper is not conventional
for finding parallel regions. However, if the results are posi-
tives, this approach can be used to reduce the time and cost
to find these regions.

References
del Rio Astorga, D.; Dolz, M. F.; Sánchez, L. M.; Garcı́a,
J. D.; Danelutto, M.; and Torquati, M. 2018. Finding paral-
lel patterns through static analysis in c++ applications. The
International Journal of High Performance Computing Ap-
plications 32(6):779–788.


