A Representation of a Compiler in PDDL

Claudio Scheer
Master’s Degree in Computer Science
Pontifical Catholic University of Rio Grande do Sul - PUCRS
Porto Alegre - RS, Brazil

Abstract

Testing whether a program can be run in parallel is not
an easy task. This process involves tasks that demand a
lot of time and, consequently, finantial resources. As an
approach to this problem, this paper proposes a formal-
ization of a compiler with PDDL. With this formaliza-
tion, it will be possible to reduce the identification of a
parallel code to a conventional search problem.

There are still many programs that do not exploit the par-
allel capacity of today’s processors. The cost to rewrite this
program is high. Among the steps involved in the process
of migrating a program to a parallel approach, the most ex-
pensive is to identify the regions of the program than can be
executed in parallel.

According to (del Rio Astorga et al. 2018), loops detec-
tion, variable dependencies, identifying whether the argu-
ments are read or written, among other analyzes, are the
main patterns that identify a region parallel in a program.

Instead of using a static analysis of the source code, my
approach will be to reduce the problem of identifying a re-
gion that can be executed in parallel to a search problem.
The domain will be formalized using PDDL. In a nutshell,
the domain will function as a compiler. Section discusses in
more detail how the PDDL domain will work.

A PDDL domain describe actions that can be performed
in an initial state, to achieve a set of goals. The initial state
of the proposed approach will be the source code mapped
to a set of predicates. This step is the bottleneck of that ap-
proach. However, this approach can be easily automated (I
was thinking of creating this tool, but first I will implement
the compiler). The expected set of goals will be the sequen-
tial execution of all the instruction mapped in the predicates.

Technical Approach

Compilers, in general, are complex programs. They need to
translate the written source code into an executable code.
In a rough overview, the compiler needs to break the source
code into tokens. A token can be a keyword, a variable name,
an operator, etc. The tokens is generally represented in a tree.
In this tree, the compiler run some optimizations, such as re-
moving unused variables and unreachable codes. After all

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that, the compiler can convert the tree to machine instruc-
tions.

In addition, the compiler must support all instructions pro-
vided by the programming language. As you can see, it is
difficult to develop a compiler. Therefore, in this paper, I
propose a compiler formalized as a PDDL domain, with sup-
port for only a few intructions (I do not know which instruc-
tions. I was thinking in arithmetic instructions, functions and
loops). In theory, this approach would work for all program-
ming languages. However, I will create the actions and the
predicates from the perspective of a source code written in
C.

- It would be cool to use fluents and test whether the out-
put is correct or not

- cite planners to be tested

- include an example

Results Evaluation

As previously described, the goal of the planner will be to
execute all the instructions of the program in the correct or-
der, and find for instructions that can be executed in parallel.
Therefore, to evaluate the correct output of the planner, I will
map the predicates back to the source code and validate the
parallel execution proposed by the planner.

Project Management

Task Start End

Understand 06-01-2020 06-03-2020

better

compilers

Support sum 06-03-2020 06-07-2020

instruction

Support 06-08-2020 06-18-2020

proposed

instructions

Write paper 06-20-2020 06-25-2020
References

del Rio Astorga, D.; Dolz, M. F.;; Sanchez, L. M.; Garcia,
J. D.; Danelutto, M.; and Torquati, M. 2018. Finding paral-
lel patterns through static analysis in c++ applications. The

International Journal of High Performance Computing Ap-
plications 32(6):779-788.



