
Performance Comparison Between Different Concurrent Lists

Claudio Scheer
claudio.scheer@edu.pucrs.br

May 28, 2020

1 Introduction

In this report, I will present performance results using different list approaches. Five approaches were tested:
coarse list, fine list, lazy list, lock free list and optimistic list. Each of these concurrent lists has methods for
adding items, removing items, and testing whether the list contains a specific item.

To assess performance, I used the implementations provided by the authors of the book [1]. These
implementations needed a few changes discussed in Section 2. As all implementations were in Java, I also
executed all tests in Java.

I do not discuss in depth the differences between the lists in this report, as these differences are discussed
in detail in Section 9 of the book [1]. In addition, the differences and how each list is implemented were
widely discussed in class.

In doing so, in Section 3, I discussed the methodology used in the tests and, in Section 4, I present the
results of the tests.

2 Problems with the authors’ implementation

Two main problems were found: an implementation error in the optimistic list and outdated implementations.
All implementations were downloaded from this website: https://booksite.elsevier.com/9780123973

375.
In the provided implementation of the optimistic list (OptimisticList.java), authors use the following

method to add an item to the list:

1 public boolean add(T item) {

2 int key = item.hashCode ();

3 while (true) {

4 Entry pred = this.head;

5 Entry curr = pred.next;

6 while (curr.key <= key) {

7 pred = curr;

8 curr = curr.next;

9 }

10 pred.lock ();

11 curr.lock ();

12 try {

13 if (validate(pred , curr)) {

14 if (curr.key == key) { // present

15 return false;

16 } else { // not present

17 Entry entry = new Entry(item);

18 entry.next = curr;

19 pred.next = entry;

20 return true;

21 }

22 }

23 } finally { // always unlock

24 pred.unlock ();

25 curr.unlock ();

26 }

27 }

28 }

Listing 1: Method add of OptimisticList.java

1



On lines 7 and 8, the pred variable assumes the current node and curr assumes the next node. Therefore,
if the = sign is used on line 6 of Listing 1, the test on line 14 will never be satisfied and the item will always
be added to the list. Hence, to solve this problem, I simply removed the = sign on line 6.

Another problem I had with the lists was the different implementations between the 2008 and 2012 book
edition. In the 2012 edition, some implementations were updated, but the source code provided was not.
Therefore, all implementations were updated according to the 2012 book edition.

The next point is not a problem with the list’s implementations, but a necessary feature for my tests.
The required feature was a method that could return the size of the list. This method was used to test
whether the list size was stable during the test period.

Therefore, to avoid adding an overhead to the methods originaly implemented by the authors, I create
a method that simply looks for the next item from the head node to the tail node. The nodes are counted
and the the count is returned. All lists follow the same logic. This method has no blocking, which can make
the return of this method out of date. However, in my tests, this did not appear to be a problem.

3 Testing methodology

The experiments were run on a computer with the following configuration:

• Java version: openjdk 14.0.1

• OS: Ubuntu 20.04

• Cores per socket: 6

• Threads per core: 2

• CPUs: 12

• RAM: 32GB

Since the computer has 12 CPUs available, I ran the experiments using 2, 4, 6, 8, 10 and 12 threads.
For each number of threads, I tested three list sizes: 100 items, 1000 items and 10000 items. These eighteen
experiments were executed three time each and the mean and standard deviation were used to analyze the
results.

The number of elements in the list must be stable. Therefore, as the number added and removed from
the list is random, I generated random numbers using Equation 1, where N is the size of the list.

0 ≤ x < (N ∗ 2) (1)

There are four possible operations to be performed on a list: add, remove, contains and list size. The
list size operation is used to colect the size of the list at a specific point. The probability of each operation
is 40%, 40%, 19.9999% and 0.0001%, respectively.

In summary, the specific number of threads is started and each thread gets a random operation and
performs it. The number of operations performed on each thread is stored and added to other threads at
the end of the test.

The warm-up and test time was 15 seconds and 60 seconds, respectively. The operations performed were
counted only during the test time. To obtain the throughput of each list, I divided the total number of
operations performed on all threads by the test time. In the throughput, the test time also includes the time
to interrupt and join the threads.

4 Results

Each section below shows the throughput and the list size for each list tested. The throughput plot shows
the average value and the standard deviation, separated by the − (hyphen) character.

In general, the smaller the list size, the higher the throughput. In addition, in all implementations of
the lists, the size remained stable. Since the list size is stable, I do not show the number of each operation
performed in this report. However, all of this information can be seen in the GitHub repository, presented
in Section 6, in the folder test/raw-data.

2



4.1 Coarse list

Figure 1 shows the average size of the coarse list.

2 4 6 8 10 12
Threads

0

2000

4000

6000

8000

10000

Av
er

ag
e 

Lis
t S

ize

100.12

1001.36

10009.89

100.13

1001.01

10013.94

100.12

1001.63

10021.12

100.13

1001.24

10017.96

100.13

1001.24

9989.77

100.12

1000.99

10007.53

Coarse List Average List Size

100
1k
10k

Figure 1: Coarse List Average List Size

In general, what Figure 2 shows is that increasing the number of threads does not increase the throughput.
The list with 100 items had better performance with 4 threads and the worst performance with 12 threads.
In a larger coarse list, the number of threads does not affect the throughput.

2 4 6 8 10 12
Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

/s
ec

on
d)

1e6

2537483-103455

245237-2428

14206-21

3357341-211808

245050-4404

14033-59

3234233-215632

238153-6148

13923-48

2718800-235373

241585-5554

13956-60

2292041-265914

238487-9364

13918-172

2195331-225313

243567-1103

13872-22

Coarse List Throughput
100
1k
10k

Figure 2: Coarse List Throughput

3



4.2 Fine list

Figure 3 shows the average size of the fine list.

2 4 6 8 10 12
Threads

0

2000

4000

6000

8000

10000

Av
er

ag
e 

Lis
t S

ize

100.11

1001.04

10021.76

100.14

1001.00

9999.23

100.14

1001.87

10005.72

100.11

1001.10

10022.33

100.16

1001.41

10017.58

100.09

1001.08

10020.29

Fine List Average List Size

100
1k
10k

Figure 3: Fine List Average List Size

Similar to the coarse list, in general, increasing the number of threads does not increase throughput of
the list. Only in the larger list, the throughput increased with the number of threads, as shown in Figure 4.

A strange behavior happened in the list with 100 elements, using 2 threads. I do not know why, but the
throughput was much higher than the same list size using 4 threads.

2 4 6 8 10 12
Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

/s
ec

on
d)

1e6

1215627-53729

132524-14473

14347-1797

388266-66230

186664-30835

21699-2576

378390-66959

181420-14399

24198-2244

402656-37051

190950-12751

28300-697

363811-32178

173962-11743

29717-2348

370253-48054

156505-19590

30538-1873

Fine List Throughput
100
1k
10k

Figure 4: Fine List Throughput

4



4.3 Optimistic list

Figure 5 shows the average size of the optimistic list.

2 4 6 8 10 12
Threads

0

2000

4000

6000

8000

10000

Av
er

ag
e 

Lis
t S

ize

100.17

1001.24

10023.91

100.09

1001.11

9997.58

100.01

1001.19

10011.11

99.95

1001.45

10015.67

99.92

1001.34

10010.64

99.89

1001.25

10005.20

Optimistic List Average List Size

100
1k
10k

Figure 5: Optimistic List Average List Size

The list with 100 items decreased the performance with more threads. In the other two lists, more threads
resulted in more throughput, as shown in Figure 6.

2 4 6 8 10 12
Threads

0

1

2

3

4

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

/s
ec

on
d)

1e6

3951243-51466

324284-639

13629-128

4258130-50643

559187-13348

24868-816

4156211-24130

766517-8440

33709-584

3813903-76416

941600-29166

42636-681

3661928-75603

1114618-29851

49817-1036

3552427-91601

1150456-65497

54984-661

Optimistic List Throughput
100
1k
10k

Figure 6: Optimistic List Throughput

5



4.4 Lazy list

Figure 7 shows the average size of the lazy list.

2 4 6 8 10 12
Threads

0

2000

4000

6000

8000

10000

Av
er

ag
e 

Lis
t S

ize

99.98

999.74

10005.99

100.17

1000.11

9995.82

100.43

1000.21

10008.28

100.05

1000.27

10007.11

100.56

1000.92

9999.71

100.53

1000.87

10003.33

Lazy List Average List Size

100
1k
10k

Figure 7: Lazy List Average List Size

Among the list that used a lock mechanism, the lazy list had the best performance. With the smaller
list, the throughput increased up to 8 threads and, considering the standard deviation, the throughput was
almost stable with 10 and 12 threads.

With the larger lists, the throughput increased with the number of threads, as shown in Figure 8. On a
computer with more CPUs available, the throughput may increase even more.

2 4 6 8 10 12
Threads

0

2

4

6

8

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

/s
ec

on
d)

1e6

7262437-239097

616514-23878

25502-416

7886346-239197

1131128-26692

50224-435

8292615-246319

1536904-34929

68367-335

8808526-138489

1968354-31319

85483-338

8505578-353796

2385774-21071

102210-872

8459368-264446

2619471-59433

113875-3460

Lazy List Throughput
100
1k
10k

Figure 8: Lazy List Throughput

6



4.5 Lock free list

Figure 9 shows the average size of the lock free list.

2 4 6 8 10 12
Threads

0

2000

4000

6000

8000

10000

Av
er

ag
e 

Lis
t S

ize

100.02

999.64

9994.79

99.34

1000.25

10009.97

99.96

1000.68

10003.90

100.26

999.77

9989.63

100.48

999.99

10011.75

98.72

1000.63

10005.36

Lock Free List Average List Size

100
1k
10k

Figure 9: Lock Free List Average List Size

The lock free list, as the name implies, does not use the lock mechanism. Therefore, intuitively, it is
expected to have a higher throughput. However, as Figure 10 shows, the lock free list surpasses the lazy
list only in smaller lists. As the number of items in the list increases, the throughput of tje optimistic list
becomes worst than when using the lock mechanism.

Even so, it is important to note than the throughput increases significantly with the number of threads.

2 4 6 8 10 12
Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

/s
ec

on
d)

1e7

5458682-64870

260576-111115236-114

7239614-752976

490143-14416
26968-824

8669849-319413

640260-16505
34990-964

10129313-290769

806525-17901

44229-1008

11514179-57891

981262-29242

51990-1044

12432446-382117

1118437-33934

61022-2211

Lock Free List Throughput
100
1k
10k

Figure 10: Lock Free List Throughput

7



5 Conclusions

The lock free list have a good performance on small lists. However, on a larger list, its performance can be
poor when compared to the lazy list. One possible explanation for this is that the list needs many while
loops to ensure that a node was not changed by another thread.

In general, as the number of threads increase, the throughput also increases. Another important thing
to note is that, as the complexity of the list increases, the throughput also increases. This shows that there
is space for new approaches that make a better use of the resources provided by the computer or even by
the programming language.

6 Source code

All the souce code used in this work are available here: https://github.com/claudioscheer/concurren

t-producer-consumer.

References

[1] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, 2012.

8


