0~ Uk WN

Performance Comparison Between Different Concurrent Lists

Claudio Scheer
claudio.scheer@edu.pucrs.br

May 28, 2020

1 Introduction

In this report, I will present performance results using different list approaches. Five approaches were tested:
coarse list, fine list, lazy list, lock free list and optimistic list. Each of these concurrent lists has methods for
adding items, removing items, and testing whether the list contains a specific item.

To assess performance, I used the implementations provided by the authors of the book [1]. These
implementations needed a few changes discussed in Section 2. As all implementations were in Java, I also
executed all tests in Java.

I do not discuss in depth the differences between the lists in this report, as these differences are discussed
in detail in Section 9 of the book [1]. In addition, the differences and how each list is implemented were
widely discussed in class.

In doing so, in Section 3, I discussed the methodology used in the tests and, in Section 4, I present the
results of the tests.

2 Problems with the authors’ implementation

Two main problems were found: an implementation error in the optimistic list and outdated implementations.
All implementations were downloaded from this website: https://booksite.elsevier.com/9780123973
375.

In the provided implementation of the optimistic list (OptimisticList.java), authors use the following
method to add an item to the list:
public boolean add(T item) {

int key = item.hashCode ();
while (true) {

Entry pred = this.head;
Entry curr = pred.next;
while (curr.key <= key) {
pred = curr;
curr = curr.next;
}
pred.lock ();
curr.lock ();
try {
if (validate(pred, curr)) {
if (curr.key == key) { // present
return false;
} else { // not present
Entry entry = new Entry(item);
entry.next = curr;
pred.next = entry;
return true;
}
}

} finally { // always wunlock
pred.unlock ();
curr.unlock () ;

Listing 1: Method add of OptimisticList.java

On lines 7 and 8, the pred variable assumes the current node and curr assumes the next node. Therefore,
if the = sign is used on line 6 of Listing 1, the test on line 14 will never be satisfied and the item will always
be added to the list. Hence, to solve this problem, I simply removed the = sign on line 6.

Another problem I had with the lists was the different implementations between the 2008 and 2012 book
edition. In the 2012 edition, some implementations were updated, but the source code provided was not.
Therefore, all implementations were updated according to the 2012 book edition.

The next point is not a problem with the list’s implementations, but a necessary feature for my tests.
The required feature was a method that could return the size of the list. This method was used to test
whether the list size was stable during the test period.

Therefore, to avoid adding an overhead to the methods originaly implemented by the authors, I create
a method that simply looks for the next item from the head node to the tail node. The nodes are counted
and the the count is returned. All lists follow the same logic. This method has no blocking, which can make
the return of this method out of date. However, in my tests, this did not appear to be a problem.

3 Testing methodology
The experiments were run on a computer with the following configuration:

e Java version: openjdk 14.0.1
e OS: Ubuntu 20.04

e Cores per socket: 6

e Threads per core: 2

e CPUs: 12

e RAM: 32GB

Since the computer has 12 CPUs available, I ran the experiments using 2, 4, 6, 8, 10 and 12 threads.
For each number of threads, I tested three list sizes: 100 items, 1000 items and 10000 items. These eighteen
experiments were executed three time each and the mean and standard deviation were used to analyze the
results.

The number of elements in the list must be stable. Therefore, as the number added and removed from
the list is random, I generated random numbers using Equation 1, where N is the size of the list.

0<z<(N=x2) (1)

There are four possible operations to be performed on a list: add, remove, contains and list size. The
list size operation is used to colect the size of the list at a specific point. The probability of each operation
is 40%, 40%, 19.9999% and 0.0001%, respectively.

In summary, the specific number of threads is started and each thread gets a random operation and
performs it. The number of operations performed on each thread is stored and added to other threads at
the end of the test.

The warm-up and test time was 15 seconds and 60 seconds, respectively. The operations performed were
counted only during the test time. To obtain the throughput of each list, I divided the total number of
operations performed on all threads by the test time. In the throughput, the test time also includes the time
to interrupt and join the threads.

4 Results

Each section below shows the throughput and the list size for each list tested. The throughput plot shows
the average value and the standard deviation, separated by the — (hyphen) character.

In general, the smaller the list size, the higher the throughput. In addition, in all implementations of
the lists, the size remained stable. Since the list size is stable, I do not show the number of each operation
performed in this report. However, all of this information can be seen in the GitHub repository, presented
in Section 6, in the folder test/raw-data.

4.1 Coarse list

Figure 1 shows the average size of the coarse list.

Coarse List Average List Size

10000 4.0009.89 001394 +0021.1 #0017.96 490989 77 #0007%.53
8000

Y 6000

5

P —»— 100

: —#— 1k

g —#— 10k

g

$

<

4000

2000

200136 00101 00163 00124 00124 _ _ ,000.H9

001 $001 40012 40013 #0013 4100.1p

2 4 6 8 10 12
Threads

Figure 1: Coarse List Average List Size

In general, what Figure 2 shows is that increasing the number of threads does not increase the throughput.
The list with 100 items had better performance with 4 threads and the worst performance with 12 threads.
In a larger coarse list, the number of threads does not affect the throughput.

1e6 Coarse List Throughput
3.5 1
57341-211808 —#— 100
234233-215632 - 1k
—#— 10k
3.0
37483-103455

2.5 1
35 92041-265914
s 195331-225313
I}
8
5 2.0
c
s
©
[
o
°
T 1.5
=3
Qo
£
o
=
e
£

1.0

0.5 1

£4§7?7»2428 945050-4404 e?R'I 53-6148 94]585-5554 :??8487-9?54 4&43567-1103
0.0 gd?ﬂﬁ-?l 540??-'§Q 5?97?-48 ;J'{Q‘;ﬁ-ﬁn é?918-172 £3872-22
2 4 6 8 10 12
Threads

Figure 2: Coarse List Throughput

4.2 Fine list

Figure 3 shows the average size of the fine list.

Fine List Average List Size

+10020.29

10000 4.0021.76 49999.23 40005 00223 4.0017.58

8000

6000

Average List Size

4000

2000

200104 00100 00187 J00Ll0 00141 ,00Lp8

40011 40014 40014 £0011 40016

—#— 100
—#- 1k
—#— 10k

+100.0p

2 4 6 8 10
Threads

Figure 3: Fine List Average List Size

12

Similar to the coarse list, in general, increasing the number of threads does not increase throughput of
the list. Only in the larger list, the throughput increased with the number of threads, as shown in Figure 4.
A strange behavior happened in the list with 100 elements, using 2 threads. I do not know why, but the

throughput was much higher than the same list size using 4 threads.

1e6 Fine List Throughput

1.2

1.01

0.8 1

0.6 1

0.4 4 2656-37051

Throughput (operations/second)

0.2 1 - - 50-12751
14473

—#— 100
- 1k
—%— 10k

70253-48054

62-11743 56505-19590

414347-1797 421699-2576 424198-2244 428300-697
0.0 4 T

429717-2348 430538-1873

2 4 6 8
Threads

Figure 4: Fine List Throughput

10 12

4.3 Optimistic list

Figure 5 shows the average size of the optimistic list.

Optimistic List Average List Size

10000 4002391 4999758 4001111 #.0015.67 +0010.64 #0003.20
8000

¢ 6000

o

B —#— 100

: —- 1k

g —#— 10k

1]

H

<

4000

2000

400124 300111 300119 00145 00134 JOOLPS

Threads

Figure 5: Optimistic List Average List Size

The list with 100 items decreased the performance with more threads. In the other two lists, more threads
resulted in more throughput, as shown in Figure 6.

1e6 Optimistic List Throughput
8130-50643 —#— 100
156211-24130 —— 1k
44 —9— 10k
61928-75603
552427-91601
=31
T
i=
o
S
(7
a
@
f=4
S
g
v
Q
S 2
=
5
Q
<
[
3
2
<
-
150456-65497
1 <
0 413629-128 424868-816 _.'33700-‘384 é?ﬁ?ﬁ-ﬁﬁ‘l £9817-10?6 :498..-661
2 4 6 8 10 12
Threads

Figure 6: Optimistic List Throughput

4.4 Lazy list

Figure 7 shows the average size of the lazy list.

Among the list that used a lock mechanism, the lazy list had the best performance. With the smaller
list, the throughput increased up to 8 threads and, considering the standard deviation, the throughput was

10000

8000

6000

Average List Size

4000

2000

Lazy List Average List Size

4000599 49995 82 40008.28 000711 49999.71. #0003.33

—#— 100
—#- 1k
—#— 10k

99974 300011 300021 00027 00092 100087

499.98 0017 40043 400,05 #0056 41005

2 4 6 8 10 12
Threads

Figure 7: Lazy List Average List Size

almost stable with 10 and 12 threads.

With the larger lists, the throughput increased with the number of threads, as shown in Figure 8. On a

computer with more CPUs available, the throughput may increase even more.

Throughput (operations/second)

[=)]
L

IS
L

1e6 Lazy List Throughput
%= 100 08526-138489
459368-264446
619471-59433
25502-416 450224-435 +68367-335 +85483-338 4.02210-872 +113875-3460
2 4 6 8 10 12
Threads

Figure 8: Lazy List Throughput

4.5 Lock free list

Figure 9 shows the average size of the lock free list.

Lock Free List Average List Size

10000 49994.79 +.0009.97 4.0003.90 49989.63 001175 +10005.36

8000

6000

—#— 100
i 13
—#— 10k

Average List Size

4000

2000

99964 100025 00068 99977 ,99999 __ ,1000.p3

$.00.0: $9.34 £9.96 #0026 #0048 #$8.72

2 4 6 8 10 12
Threads

Figure 9: Lock Free List Average List Size

The lock free list, as the name implies, does not use the lock mechanism. Therefore, intuitively, it is
expected to have a higher throughput. However, as Figure 10 shows, the lock free list surpasses the lazy
list only in smaller lists. As the number of items in the list increases, the throughput of tje optimistic list
becomes worst than when using the lock mechanism.

Even so, it is important to note than the throughput increases significantly with the number of threads.

1e7 Lock Free List Throughput
—#— 100 2437446-382117
—-—
124 1k
—#— 10k 179-57891
1.0
5
c
S 0.8
[
@
&
c
S
2
o
g
806
v
>
o
<
(=
=3
o
£0.44
0.2 1
118437-33934
0.0 5236-114 26968-824 +34990-964 444229-1008 451990-1044 61022-2211
2 4 6 8 10 12

Threads

Figure 10: Lock Free List Throughput

5 Conclusions

The lock free list have a good performance on small lists. However, on a larger list, its performance can be
poor when compared to the lazy list. One possible explanation for this is that the list needs many while
loops to ensure that a node was not changed by another thread.

In general, as the number of threads increase, the throughput also increases. Another important thing
to note is that, as the complexity of the list increases, the throughput also increases. This shows that there
is space for new approaches that make a better use of the resources provided by the computer or even by
the programming language.

6 Source code

All the souce code used in this work are available here: https://github.com/claudioscheer/concurren
t-producer-consumer.

References

[1] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, 2012.

