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Abstract—With the development of deep learning, it has been 
applied in various field of computer science. Generating computer 
executable code from natural language descriptions is an urgent 
problem in the artificial intelligence. This paper proposed a 
solution based on deep learning for code generation. Encoder- 
Decoder model is used in our method to convert natural language 
description into target code. Because of the rapid development 
of information technology, all aspects of software resources have 
been greatly enriched. The deep learning model we designed 
takes the natural language description as input and generates 
the corresponding object code by extracting the code from the 
open source software library. We collected natural language 
descriptions of 20 problems that undergraduate students often 
encounter in their daily programming. Experimental results show 
that our method is practicable. Our approach also provides a 
good idea to extract useful code from open resource for code 
generation.

Index Terms—code generation, open resource software, LSTM, 
Encoder-Decoder

I. I NTRODUCTION

With the popularity of the Internet and the explosive growth 
of information technology, demand for new software is ex­
ponentially growing, but the productivity of software is far 
below the needs of people. At the same time, the scale and 
complexity of software systems are also increasing. However, 
the resources used to develop such software are not kept 
in sync. This leads to a software crisis [1]. The traditional 
software development method exposes the defects in the new 
technology environment, such as long development cycle, 
large work repetition, and great difficulties in system evolution 
and maintenance. How to improve the efficiency of software 
development to meet people's growing needs is an urgent 
problem to be solved. At this point, code generation [2][3] 
technology is born at the right moment. Code generation refers 
to the program that generates the code, more detailed refers to 
the use of structured or unstructured program description as 
input [4], the process of generating standard source code that 
a computer can understand.

With the prosperity of artificial intelligence, how to make 
the machine automatically generate programs is an important 
but challenging problem that we want to solve [4][5][6]. It 
makes a lot of sense for machine to generate code by itself. 
This can free the vast majority of coders from the heavy task 
of programming that allows the programmers has more time
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to pay attention to the design of system architecture. It will 
greatly improve the efficiency of software development. In 
recent years, deep neural networks (DNNs) [7]widely used 
in various fields of computer science. Including machine 
translation [8][9] , speech recognition [10]and visual object 
recognition [11], etc. And achieved very good results, so 
we wondered i f  we could apply DNNs to code generation. 
The idea of using deep learning method to generate code 
automatically comes from machine translation that is the 
process of converting a natural language into another natural 
language using a computer. The essence of code generation 
is machine translation, but this particular machine translation 
takes a structured or unstructured description as the source 
language, the executable code we want to generate as the target 
language.

As a new way of software development, code generation 
technology is still in constant development. Research in the 
academic field that uses deep learning to generate code has 
become increasingly popular, although code generation is still 
inadequate in many ways. But in the future, code generation 
will play a significant role in promoting the development 
of software, and greatly improved the efficiency of software 
development. The benefits of code generation are as follows:

• Reduce repetitive coding efforts. Automatic code gener­
ation can reduce unnecessary repetitive code writing, improve 
software development efficiency and optimize software devel­
opment process.

• The code generation style is consistently good. When 
different programmers write modules of the same function, the 
source code that is finally written will be very different. How­
ever, the source code generated by automatic code has good 
consistency and standardization, as well as good readability.

• Easy to modify and upgrade. Another advantage of 
code generation is scalability. In the long run, automatic code 
generation technology makes software easier to modify and 
upgrade.

The classes and amount of software repositories become 
rich and abundant with the maturing of software industry. Soft­
ware development cycle is getting shorter and shorter. Writing 
industrial-scale software from scratch has been difficult to 
reproduce. Integrated transformation development or evolu­
tion based on large-scale reuse has become the mainstream
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development mode. On the other hand, the comprehensive 
intervention of information technology in human society. All 
aspects of the software resources have been greatly enriched. 
From the perspective of code generation, the possibility of 
encountering a completely new software feature that has never 
been seen before is very low. Therefore, it is of great value 
to learn from existing resources to extract code and generate 
code automatically.

II. Re l a t e d  W o r k

In existing code generation techniques. The input can be 
divided into structured input or unstructured input. Structured 
input is a very precise input method that relies on structured 
storage of data, structured input requires users to be clear 
about their needs. At the same time, users are required to 
have a certain professional background knowledge, this puts 
high demands on the users of the system. Contrary to the 
structured input, unstructured input doesn't require users to 
have relevant background knowledge, just use your familiar 
language as input that automatically generate code. And make 
it possible for people without any programming experience 
to write programs. Code generation technology will great 
improve the efficiency of software development that makes 
automatic code generation possible. And ultimately realize
the finally dream of software engineering field------ let the
software generate the software.

Code generation is an important application field that ar­
tificial intelligence has always hoped to conquer. With the 
increasing popularity of deep learning, recently it has been 
widely used in code generation and has made great progress. 
Traditionally this problem can be called inductive program 
synthesis (IPS). The goal of the IPS problem is to generate a 
piece of code automatically from a given set of input-output 
examples that converts a given input into a given output.

Early research on code generation focused on domain 
specific language (DSL). Scott et al. proposed the neural 
programmer-Interpreters [12], it is a recurrent and compo­
sitional neural network that learn to represent and execute 
programs. Matej et al. put forward a method that can solve 
programming competition-style problems from input-output 
examples using deep neural networks that called DEEP- 
CODER [13]. Dong et al. propose a general method based 
on encoder-decoder model with neural attention [14], it can 
encode input utterance into vector and generate their logical 
forms by conditioning the output sequences on the encoding 
vectors. These methods are based on rules and human-defined 
functions primarily, so it's very limited. Recently researchers 
have introduced neural networks to generate code in a common 
programming language. Ling et al. [4] present a novel neural 
network architecture which generate an output sequence con­
ditioned on an arbitrary number of input functions. However, 
this method is based on recurrent neural network (RNN), but 
RNN has proven to be unsuitable for handing long sequence 
of input [15]. Therefore, the generalization of this method and 
the accuracy of generated code need to be improved. Based 
on this method, Sun et al. raised a grammar-based structural

public class HelloWorld

public static void main(String[] args)

{
Sysetm.out.println("helllo world!");

{

natural language 
description Encoder Decoder code snippet

Fig. 1. Encoder-Decoder model for our method

convolutional neural network [16] for code generation, and 
achieved impressive results. Mou et al. [17] envisions an end- 
to-end program generation scenario using recurrent neural net­
works. Users express their intention through natural language 
descriptions, and then RNN generates object code character- 
by-character. And the input of these two kinds of neural 
networks is structured or unstructured programming language 
description. This is very unfriendly for beginner programmers. 
To make code generation more convenient and practical, we 
use natural language descriptions as input to generate the 
executable snippets that we want. Rabinovich et al. present a 
modeling framework that called abstract syntax networks [5], 
the outputs in this model are represented as abstract syntax 
trees (ASTs) and constructed by a decoder. The approach take 
account for much richer structural constrains on outputs. Yin et 
al. propose a novel neural architecture powered by a grammar 
model [18] to explicitly capture the target syntax as a prior 
knowledge.

II I .  M o d e l

In order to automatic generate code through natural lan­
guage descriptions, first we need to transform the natural lan­
guage description into a form that computers can understand 
through word embedding. Word embedding is then fed into the 
encoder and a coding vector is generated. Then target code is 
generated by the encoder. The Fig.1 demonstrate the overall 
architecture of our model.

Encoder-Decoder structure that based on neural network 
[8][14] has been widely used in natural language processing, 
from semantic analysis to machine translation, then to image 
description generation. The essence of code generation is 
machine translation, it's just that translate natural language 
description into code snippets. Therefore, encoder-decoder 
model is also used in our method to generate code. Encoder- 
Decoder model consists of two neural networks which are 
used as encoder and decoder respectively. The encoder maps 
the natural language descriptions into a vector with variable 
length. Then the decoder maps this vector back to the target 
code that we want to generate. The two neural networks trained 
together to maximize the conditional probabilities from natural 
language description to code. The neural networks we adoption 
in our method is Long Short-Term Memory (LSTM) [19], 
LSTM is an improved RNN. Experiments show that LSTM 
has a good effect on dealing with long-term dependencies.
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A. Formulation

Our goal is to build a model that maps natural language 
descriptions d =  x 1...x\n\ to a piece of code c =  y1...y\m\ 
The conditional probability p (c|d) can be decomposed as:

T

p (c|d) =  n p  (y t \ v < t ,d) (1)
t = 1

where y < t  =  y i. . .y t- i.
In our method,the encoder which encodes natural language 

descriptions d into a vector representation, and the decoder 
then learns to generate code snippet c from open source 
codebase according to the vector representation. It is important 
to note that the more similar the natural language description 
are, the closer the encoding vector are. In this way, semantic 
similarity between two descriptions can be well expressed, so 
as to improve the accuracy of code generation.

B. Encoder

For a natural language description d consisting of n tokens, 
the encoder processes tokens one by one in a recursive manner. 
Let ht € Rn indicate the hidden vector at time step t, wt 
represent the token that input to the model at time step t. So 
ht is then computed by:

ht =  LSTM(ht - i  ,wt ) (2)

where LSTM refers to the LSTM function in Keras [20]. From 
the prospective of encoder, ht =  Wqe(xt ) is the word embed­
ding vector of the current input token, with Wq € Rn x \Vq \ 
indicate a parameter matrix, and e(.) is the index of the 
corresponding token.

C. Decoder

The decoder uses an LSTM network to model the sequential 
generation of the code snippet we need. Once the tokens of 
the natural language descriptions [d =  x 1...x\n \ are encoded 
as a vector, they are delivered to the decoder to initialize the 
hidden states. Next, the hidden vectors of the topmost LSTM 
ht in the decoder is used to predict the output token at time 
step t as:

p(yt |y< t , q) =  softmax(W0ht )Te(yt ) (3)

where Wo € R \Va\x n  denote a parameter matrix, and 
e(yt ) € {0 ,1}\V“ \ mean a one-hot vector for computing yt ’s 
probability from the predicted distribution. Then conditional 
probability of generating the entire target code from input is 
calculated by Equation (1).

D. Validation

At test time, we predict the target code for a natural 
language description d by:

c =  argmax p(c' |d) (4)
c'

where C present a possible output. However, it is impractical 
to iterate over all possible result to obtain the optimal predic­
tion. According to Equation (1), we decompose the probability

p (c|d) so that we can use beam search to generate code snippet 
from open source codebase.

IV. EXPERIMENTS

We train and validate our proposed method on dataset. We 
describe the dataset in detail below, and show our experimental 
settings and results.

A. Dataset

To provide annotated data, each piece of open source 
software code snippets needs to be labeled with a natural 
language description. This is very labor-intensive i f  done by 
hand. Therefore, we used an existing dataset. The dataset 
we used was established by Gu et al. that was comprising 
18233872 commented Java methods [21]. The corpus was 
collected from open-source projects on GitHub. Each piece 
of data in the dataset consists of a code snippet and its 
corresponding natural language description. The dataset was 
extracted from all Java projects with a star on GitHub from 
August, 2008 to June, 2016, so it’s very representative and very 
suitable as a training set for code generation. One piece of data 
in this dataset that contained natural language description and 
their corresponding code snippets are shown as follows. 
return how many unique tokens we have:

p u b l i c  i n t  n u m U n iq u e T o k e n s {>
3 {

r e t u r n  t o k e n S e t . s i z e { > ;
}

B. Settings

Evaluate our approach by experimenting in the dataset. The 
dataset involved 100000 pairs of data, the split of train set and 
test set is 0.2. The epoch of this training is 2000. After the 
training is completed, we got an optimal neural network model 
with parameters. Then we validated the model using 20 natural 
language descriptions that collected from undergraduate stu­
dents. These descriptions are some of the problems they often 
encounter in daily programming. Descriptions are as present 
in TABLE 1.

C. Result

After the train is complete, we get a code generation model 
from open source codebase with natural language description 
as input. For each natural language description, we generate a 
piece of code associated with it. After the code is generated, 
we compare the generate code with the reference code to 
determine if  they have relationship. The statistical results are 
shown in Table 1:

In the status column in table 1, Y represent the code 
snippet generated from the open source codebase is related 
to the natural language description of the input. N means 
that the generated code is independent of the description 
of the input. As we can see from the table 1, 9 of the 20 
natural language descriptions can generate code snippets
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TABLE I
St a t is t ic a l  r esu l t s  o f  c o de g en er at io n

NO Natural language description status

1 Create a new empty set of integers Y
2 Add an image to a workshop N
3 Sort the numbers using the bubble algorithm N
4 Get the package for this class Y
5 Find a class using the specified class loader Y
6 Send a message to the console window Y
7 Set the error flag N
8 Output an array in reverse order N
9 Connect this socket to the server Y
10 Load files from local N
11 Calculate the factorial of n N
12 Check if this header contains uncompressed strip N
13 Create a new empty file in the specified directory, using 

the given prefix and suffix strings to generate its name
N

14 Print path from source Y
15 Check if the char sequence contains only whitespace N
16 Read the next line N
17 Check if a filename is safe Y
18 Generate a hash code for multiple values N
19 Set the format of the data Y
20 Convert principal attributes to person attributes Y

associated with them from the open source codebase. The 
experimental results show that the idea of extracting code 
fragments from the open source software library for code 
generation is feasible. our approach provides a new way to 
address the problem of code generation. An example of code 
generation are as follows:
Natural language description: create a new empty set of 
integers

Generated code:

p r iv a te  i n t  [ ] c rea teE m ptyS etO fIn tege rs  { in t  max }
H

firs tW ordN otU sed = 0 ;
i n t  [ ] a r r  = new i n t  [ a rra y  Index { max -  1 ) +� ] ] ; 
return a r r  ;

1

Reference code:

p r i v a t e  i n t  [ ] c r e a te E m p ty S e tO f I n t e g e r s < i n t  n ) 

U
f o r (  i  =  0 ; i  <  n  ; i  + + )

i n t  [ ] a r r  =  new i n t  [ i  ] 

r e t u r n  a r r

1 V. V.

V. Co n c l u s io n

We introduced a deep learning method for code generation 
from the open source codebase with natural language descrip­
tion as input. Through this model, we first convert natural 
language descriptions into variable length vector through an

encoder, then convert the vector to the target code that we 
want to generate through the decoder. Validate our model 
in a java dataset that collected from open source software. 
our experimental results prove is feasible that code generation 
from the open source software codebase. This is a small step 
toward broad code generation from open source software. 
It provides a new direction for the further research of code 
generation.
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