
Language to Code
with Open Source Software

Lei Tang,Xiaoguang Mao
College of Computer

National University of Defense Technology
Changsha, Hunan Province, China

Email:{tanglei17,xgmao}@nudt.edu.cn

Zhuo Zhang
College of Computer

National University of Defense Technology
Changsha, Hunan Province, China

Email: zz8477@126.com

Abstract—With the development of deep learning, it has been
applied in various field of computer science. Generating computer
executable code from natural language descriptions is an urgent
problem in the artificial intelligence. This paper proposed a
solution based on deep learning for code generation. Encoder-
Decoder model is used in our method to convert natural language
description into target code. Because of the rapid development
of information technology, all aspects of software resources have
been greatly enriched. The deep learning model we designed
takes the natural language description as input and generates
the corresponding object code by extracting the code from the
open source software library. We collected natural language
descriptions of 20 problems that undergraduate students often
encounter in their daily programming. Experimental results show
that our method is practicable. Our approach also provides a
good idea to extract useful code from open resource for code
generation.

Index Terms—code generation, open resource software, LSTM,
Encoder-Decoder

I. I NTRODUCTION

With the popularity of the Internet and the explosive growth
of information technology, demand for new software is ex­
ponentially growing, but the productivity of software is far
below the needs of people. At the same time, the scale and
complexity of software systems are also increasing. However,
the resources used to develop such software are not kept
in sync. This leads to a software crisis [1]. The traditional
software development method exposes the defects in the new
technology environment, such as long development cycle,
large work repetition, and great difficulties in system evolution
and maintenance. How to improve the efficiency of software
development to meet people's growing needs is an urgent
problem to be solved. At this point, code generation [2][3]
technology is born at the right moment. Code generation refers
to the program that generates the code, more detailed refers to
the use of structured or unstructured program description as
input [4], the process of generating standard source code that
a computer can understand.

With the prosperity of artificial intelligence, how to make
the machine automatically generate programs is an important
but challenging problem that we want to solve [4][5][6]. It
makes a lot of sense for machine to generate code by itself.
This can free the vast majority of coders from the heavy task
of programming that allows the programmers has more time

978-1-7281-0945-9/19/$31.00©2019 IEEE

to pay attention to the design of system architecture. It will
greatly improve the efficiency of software development. In
recent years, deep neural networks (DNNs) [7]widely used
in various fields of computer science. Including machine
translation [8][9] , speech recognition [10]and visual object
recognition [11], etc. And achieved very good results, so
we wondered i f we could apply DNNs to code generation.
The idea of using deep learning method to generate code
automatically comes from machine translation that is the
process of converting a natural language into another natural
language using a computer. The essence of code generation
is machine translation, but this particular machine translation
takes a structured or unstructured description as the source
language, the executable code we want to generate as the target
language.

As a new way of software development, code generation
technology is still in constant development. Research in the
academic field that uses deep learning to generate code has
become increasingly popular, although code generation is still
inadequate in many ways. But in the future, code generation
will play a significant role in promoting the development
of software, and greatly improved the efficiency of software
development. The benefits of code generation are as follows:

• Reduce repetitive coding efforts. Automatic code gener­
ation can reduce unnecessary repetitive code writing, improve
software development efficiency and optimize software devel­
opment process.

• The code generation style is consistently good. When
different programmers write modules of the same function, the
source code that is finally written will be very different. How­
ever, the source code generated by automatic code has good
consistency and standardization, as well as good readability.

• Easy to modify and upgrade. Another advantage of
code generation is scalability. In the long run, automatic code
generation technology makes software easier to modify and
upgrade.

The classes and amount of software repositories become
rich and abundant with the maturing of software industry. Soft­
ware development cycle is getting shorter and shorter. Writing
industrial-scale software from scratch has been difficult to
reproduce. Integrated transformation development or evolu­
tion based on large-scale reuse has become the mainstream

561

development mode. On the other hand, the comprehensive
intervention of information technology in human society. All
aspects of the software resources have been greatly enriched.
From the perspective of code generation, the possibility of
encountering a completely new software feature that has never
been seen before is very low. Therefore, it is of great value
to learn from existing resources to extract code and generate
code automatically.

II. Re l a t e d W o r k

In existing code generation techniques. The input can be
divided into structured input or unstructured input. Structured
input is a very precise input method that relies on structured
storage of data, structured input requires users to be clear
about their needs. At the same time, users are required to
have a certain professional background knowledge, this puts
high demands on the users of the system. Contrary to the
structured input, unstructured input doesn't require users to
have relevant background knowledge, just use your familiar
language as input that automatically generate code. And make
it possible for people without any programming experience
to write programs. Code generation technology will great
improve the efficiency of software development that makes
automatic code generation possible. And ultimately realize
the finally dream of software engineering field------ let the
software generate the software.

Code generation is an important application field that ar­
tificial intelligence has always hoped to conquer. With the
increasing popularity of deep learning, recently it has been
widely used in code generation and has made great progress.
Traditionally this problem can be called inductive program
synthesis (IPS). The goal of the IPS problem is to generate a
piece of code automatically from a given set of input-output
examples that converts a given input into a given output.

Early research on code generation focused on domain
specific language (DSL). Scott et al. proposed the neural
programmer-Interpreters [12], it is a recurrent and compo­
sitional neural network that learn to represent and execute
programs. Matej et al. put forward a method that can solve
programming competition-style problems from input-output
examples using deep neural networks that called DEEP-
CODER [13]. Dong et al. propose a general method based
on encoder-decoder model with neural attention [14], it can
encode input utterance into vector and generate their logical
forms by conditioning the output sequences on the encoding
vectors. These methods are based on rules and human-defined
functions primarily, so it's very limited. Recently researchers
have introduced neural networks to generate code in a common
programming language. Ling et al. [4] present a novel neural
network architecture which generate an output sequence con­
ditioned on an arbitrary number of input functions. However,
this method is based on recurrent neural network (RNN), but
RNN has proven to be unsuitable for handing long sequence
of input [15]. Therefore, the generalization of this method and
the accuracy of generated code need to be improved. Based
on this method, Sun et al. raised a grammar-based structural

public class HelloWorld

public static void main(String[] args)

{
Sysetm.out.println("helllo world!");

{

natural language
description Encoder Decoder code snippet

Fig. 1. Encoder-Decoder model for our method

convolutional neural network [16] for code generation, and
achieved impressive results. Mou et al. [17] envisions an end-
to-end program generation scenario using recurrent neural net­
works. Users express their intention through natural language
descriptions, and then RNN generates object code character-
by-character. And the input of these two kinds of neural
networks is structured or unstructured programming language
description. This is very unfriendly for beginner programmers.
To make code generation more convenient and practical, we
use natural language descriptions as input to generate the
executable snippets that we want. Rabinovich et al. present a
modeling framework that called abstract syntax networks [5],
the outputs in this model are represented as abstract syntax
trees (ASTs) and constructed by a decoder. The approach take
account for much richer structural constrains on outputs. Yin et
al. propose a novel neural architecture powered by a grammar
model [18] to explicitly capture the target syntax as a prior
knowledge.

II I . M o d e l

In order to automatic generate code through natural lan­
guage descriptions, first we need to transform the natural lan­
guage description into a form that computers can understand
through word embedding. Word embedding is then fed into the
encoder and a coding vector is generated. Then target code is
generated by the encoder. The Fig.1 demonstrate the overall
architecture of our model.

Encoder-Decoder structure that based on neural network
[8][14] has been widely used in natural language processing,
from semantic analysis to machine translation, then to image
description generation. The essence of code generation is
machine translation, it's just that translate natural language
description into code snippets. Therefore, encoder-decoder
model is also used in our method to generate code. Encoder-
Decoder model consists of two neural networks which are
used as encoder and decoder respectively. The encoder maps
the natural language descriptions into a vector with variable
length. Then the decoder maps this vector back to the target
code that we want to generate. The two neural networks trained
together to maximize the conditional probabilities from natural
language description to code. The neural networks we adoption
in our method is Long Short-Term Memory (LSTM) [19],
LSTM is an improved RNN. Experiments show that LSTM
has a good effect on dealing with long-term dependencies.

562

water

water

water

water

water

water

water

water

water

water

water

water

water

water

A. Formulation

Our goal is to build a model that maps natural language
descriptions d = x 1...x\n\ to a piece of code c = y1...y\m\
The conditional probability p (c|d) can be decomposed as:

T

p (c|d) = n p (y t \ v < t ,d) (1)
t = 1

where y < t = y i. . .y t- i.
In our method,the encoder which encodes natural language

descriptions d into a vector representation, and the decoder
then learns to generate code snippet c from open source
codebase according to the vector representation. It is important
to note that the more similar the natural language description
are, the closer the encoding vector are. In this way, semantic
similarity between two descriptions can be well expressed, so
as to improve the accuracy of code generation.

B. Encoder

For a natural language description d consisting of n tokens,
the encoder processes tokens one by one in a recursive manner.
Let ht € Rn indicate the hidden vector at time step t, wt
represent the token that input to the model at time step t. So
ht is then computed by:

ht = LSTM(ht - i ,wt) (2)

where LSTM refers to the LSTM function in Keras [20]. From
the prospective of encoder, ht = Wqe(xt) is the word embed­
ding vector of the current input token, with Wq € Rn x \Vq \
indicate a parameter matrix, and e(.) is the index of the
corresponding token.

C. Decoder

The decoder uses an LSTM network to model the sequential
generation of the code snippet we need. Once the tokens of
the natural language descriptions [d = x 1...x\n \ are encoded
as a vector, they are delivered to the decoder to initialize the
hidden states. Next, the hidden vectors of the topmost LSTM
ht in the decoder is used to predict the output token at time
step t as:

p(yt |y< t , q) = softmax(W0ht)Te(yt) (3)

where Wo € R \Va\x n denote a parameter matrix, and
e(yt) € {0 ,1}\V“ \ mean a one-hot vector for computing yt ’s
probability from the predicted distribution. Then conditional
probability of generating the entire target code from input is
calculated by Equation (1).

D. Validation

At test time, we predict the target code for a natural
language description d by:

c = argmax p(c' |d) (4)
c'

where C present a possible output. However, it is impractical
to iterate over all possible result to obtain the optimal predic­
tion. According to Equation (1), we decompose the probability

p (c|d) so that we can use beam search to generate code snippet
from open source codebase.

IV. EXPERIMENTS

We train and validate our proposed method on dataset. We
describe the dataset in detail below, and show our experimental
settings and results.

A. Dataset

To provide annotated data, each piece of open source
software code snippets needs to be labeled with a natural
language description. This is very labor-intensive i f done by
hand. Therefore, we used an existing dataset. The dataset
we used was established by Gu et al. that was comprising
18233872 commented Java methods [21]. The corpus was
collected from open-source projects on GitHub. Each piece
of data in the dataset consists of a code snippet and its
corresponding natural language description. The dataset was
extracted from all Java projects with a star on GitHub from
August, 2008 to June, 2016, so it’s very representative and very
suitable as a training set for code generation. One piece of data
in this dataset that contained natural language description and
their corresponding code snippets are shown as follows.
return how many unique tokens we have:

p u b l i c i n t n u m U n iq u e T o k e n s {>
3 {

r e t u r n t o k e n S e t . s i z e { > ;
}

B. Settings

Evaluate our approach by experimenting in the dataset. The
dataset involved 100000 pairs of data, the split of train set and
test set is 0.2. The epoch of this training is 2000. After the
training is completed, we got an optimal neural network model
with parameters. Then we validated the model using 20 natural
language descriptions that collected from undergraduate stu­
dents. These descriptions are some of the problems they often
encounter in daily programming. Descriptions are as present
in TABLE 1.

C. Result

After the train is complete, we get a code generation model
from open source codebase with natural language description
as input. For each natural language description, we generate a
piece of code associated with it. After the code is generated,
we compare the generate code with the reference code to
determine if they have relationship. The statistical results are
shown in Table 1:

In the status column in table 1, Y represent the code
snippet generated from the open source codebase is related
to the natural language description of the input. N means
that the generated code is independent of the description
of the input. As we can see from the table 1, 9 of the 20
natural language descriptions can generate code snippets

563

water

water

water

TABLE I
St a t is t ic a l r esu l t s o f c o de g en er at io n

NO Natural language description status

1 Create a new empty set of integers Y
2 Add an image to a workshop N
3 Sort the numbers using the bubble algorithm N
4 Get the package for this class Y
5 Find a class using the specified class loader Y
6 Send a message to the console window Y
7 Set the error flag N
8 Output an array in reverse order N
9 Connect this socket to the server Y
10 Load files from local N
11 Calculate the factorial of n N
12 Check if this header contains uncompressed strip N
13 Create a new empty file in the specified directory, using

the given prefix and suffix strings to generate its name
N

14 Print path from source Y
15 Check if the char sequence contains only whitespace N
16 Read the next line N
17 Check if a filename is safe Y
18 Generate a hash code for multiple values N
19 Set the format of the data Y
20 Convert principal attributes to person attributes Y

associated with them from the open source codebase. The
experimental results show that the idea of extracting code
fragments from the open source software library for code
generation is feasible. our approach provides a new way to
address the problem of code generation. An example of code
generation are as follows:
Natural language description: create a new empty set of
integers

Generated code:

p r iv a te i n t [] c rea teE m ptyS etO fIn tege rs { in t max }
H

firs tW ordN otU sed = 0 ;
i n t [] a r r = new i n t [a rra y Index { max - 1) +�]] ;
return a r r ;

1

Reference code:

p r i v a t e i n t [] c r e a te E m p ty S e tO f I n t e g e r s < i n t n)

U
f o r (i = 0 ; i < n ; i + +)

i n t [] a r r = new i n t [i]

r e t u r n a r r

1 V. V.

V. Co n c l u s io n

We introduced a deep learning method for code generation
from the open source codebase with natural language descrip­
tion as input. Through this model, we first convert natural
language descriptions into variable length vector through an

encoder, then convert the vector to the target code that we
want to generate through the decoder. Validate our model
in a java dataset that collected from open source software.
our experimental results prove is feasible that code generation
from the open source software codebase. This is a small step
toward broad code generation from open source software.
It provides a new direction for the further research of code
generation.

r e f e r e n c e s

[1] P. Naur, “Software engineering-report on a conference sponsored by the
nato science committee garimisch, germany,” http://homepages. cs. ncl.
ac. uk/brian. randell/NATO/nato1968. PDF, 1968.

[2] C. Quirk, R. Mooney, and M. Galley, “Language to code: Learning
semantic parsers for if-this-then-that recipes,” in Proceedings of the 53rd
Annual Meeting of the Association fo r Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), 2015, pp. 878-888.

[3] T. Lei, F. Long, R. Barzilay, and M. Rinard, “From natural language
specifications to program input parsers,” in Proceedings of the 51st An
nual Meeting of the Association fo r Computational Linguistics (Volume
1: Long Papers), 2013, pp. 1294-1303.

[4] W. Ling, E. Grefenstette, K. M. Hermann, T. Kocisky, A. Senior,
F. Wang, and P. Blunsom, “Latent predictor networks for code gen­
eration,” arXiv preprint arXiv:1603.06744, 2016.

[5] M. Rabinovich, M. Stern, and D. Klein, “Abstract syntax net­
works for code generation and semantic parsing,” arXiv preprint
arXiv:1704.07535, 2017.

[6] M. Hong and L. Zhang, “Can big data bring a breakthrough for software
automation?” Science China Information Sciences, vol. 61, p. 056101,
2018.

[7] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” science, vol. 313, no. 5786, pp. 504-507,
2006.

[8] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104—3112.

[9] N. Kalchbrenner and P. Blunsom, “Recurrent continuous translation
models,” in Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, 2013, pp. 1700-1709.

[10] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre­
trained deep neural networks for large-vocabulary speech recognition,”
IEEE Transactions on audio, speech, and language processing, vol. 20,
no. 1, pp. 30-42, 2011.

[11] D. Cire§an, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” arXiv preprint arXiv:1202.2745,
2012.

[12] S. Reed and N. De Freitas, “Neural programmer-interpreters,” arXiv
preprint arXiv:1511.06279, 2015.

[13] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and
D. Tarlow, “Deepcoder: Learning to write programs,” arXiv preprint
arXiv:1611.01989, 2016.

[14] L. Dong and M. Lapata, “Language to logical form with neural atten­
tion,” arXiv preprint arXiv:1601.01280, 2016.

[15] Y. Bengio, P. Simard, P. Frasconi et al., “Learning long-term depen­
dencies with gradient descent is difficult,” IEEE transactions on neural
networks, vol. 5, no. 2, pp. 157-166, 1994.

[16] Z. Sun, Q. Zhu, L. Mou, Y. Xiong, G. Li, and L. Zhang, “A grammar-
based structural cnn decoder for code generation,” arXiv preprint
arXiv:1811.06837, 2018.

[17] L. Mou, R. Men, G. Li, L. Zhang, and Z. Jin, “On end-to-end program
generation from user intention by deep neural networks,” arXiv preprint
arXiv:1510.07211, 2015.

[18] P. Yin and G. Neubig, “A syntactic neural model for general-purpose
code generation,” arXiv preprint arXiv:1704.01696, 2017.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[20] https://github.com/keras-team/keras/.
[21] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in 2018 IEEE/ACM

40th International Conference on Software Engineering (ICSE). IEEE,
2018, pp. 933-944.

564

